Inverse scattering equations for $\mathrm{g}^{3}+\mathrm{h} \phi^{4}$ theory in two dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 13 L387
(http://iopscience.iop.org/0305-4470/13/11/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 04:38

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Inverse scattering equations for $\boldsymbol{g} \boldsymbol{\phi}^{\mathbf{3}}+\boldsymbol{h} \boldsymbol{\phi}^{\mathbf{4}}$ theory in two dimensions

A Roy Chowdhury
High Energy Physics Division, Department of Physics, Jadaypur University, Calcutta700 032, India

Received 12 August 1980

Abstract

Linear equations which can be used for inverse scattering solutions for solitons in $g \phi^{3}+h \phi^{4}$ theory have been determined.

In recent times there have been vigorous attempts to obtain Lax type (1968) equations associated with nonlinear partial differential equations, for obtaining soliton-like solutions through the inverse scattering technique. However it was not possible to obtain such a linear system for the theory in two dimensions, which served as a testing ground for many theoretical formulations. But one, and many soliton-like solutions, could be obtained by the direct technique of Hirota. Here we report a set of linear equations whose consistency condition yields the Klein-Gordon equation with polynomial nonlinearity.

Let \boldsymbol{e}_{μ} be a set of two-dimensional vectors $(\mu=1,2)$ such that $\left(\boldsymbol{e}_{\mu} \cdot \boldsymbol{e}_{\nu}\right)=g_{\mu \nu}$; then we set

$$
\begin{align*}
L & =\left(\begin{array}{cc}
(\lambda / 2) \phi^{2} & \mathrm{i} \sqrt{\lambda / 2} \sum e_{\mu} \phi_{\mu} \\
-\mathrm{i} \sqrt{\lambda / 2} \sum e_{\mu} \phi_{\mu} & -(\lambda / 2) \phi^{2}
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cc}
a \phi+b & 0 \\
0 & -a \phi-b
\end{array}\right) \\
A & =\sqrt{\lambda / 2}\left(\begin{array}{ll}
0 & \phi \\
\phi & 0
\end{array}\right) . \tag{1}
\end{align*}
$$

It is then easily seen that the compatibility condition

$$
\begin{equation*}
\sum e_{\mu}\left(\partial / \partial x_{\mu}\right) L+[A, L]=0 \tag{2}
\end{equation*}
$$

is equivalent to the Klein-Gordon equation

$$
\square^{2} \phi=\lambda \phi^{3}+a \phi^{2}+b \phi .
$$

The detailed analysis of these linear systems is at present under study and will be communicated shortly.

References

